

Why you must rank your assets for 'criticalness'

Frederic Baudart Gregory Perry

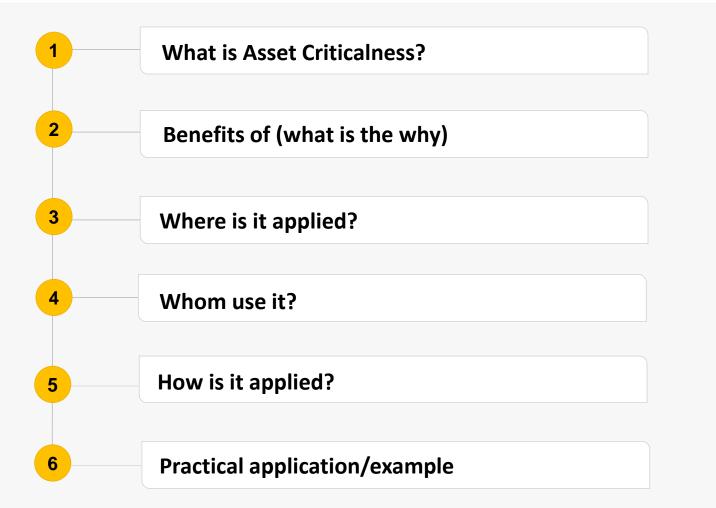
Meet the speakers

Frederic Baudart, CMRP

Lead SME Manager Fluke Reliability

- More than 20 years of experience in field service engineering and predictive/preventive maintenance
- Joined Fluke in 2015 as a Product Application Specialist
- Thermal/Infrared Thermography Level 1-certified
- Certified Maintenance and Reliability Professional (CMRP)
- Focused on business global consulting services, reliability, and condition monitoring

Meet the speakers


Gregory Perry, CMRP, CRL

Capacity Assurance Consultant Fluke Reliability

- Former maintenance practitioner (healthcare), 20+ years of experience maintenance & reliability experience – especially within CMMS realms
- Joined Fluke in 2016 as a CMMS Consultant part of acquisition
- Certified Maintenance and Reliability Professional (CMRP)
- Focused on CMMS implementation initiatives with 300+ CMMS implementations. Fluke Reliability subject-matter expert presenting at leading industry conferences

Agenda

© 2020 | Fluke Reliability

POLL QUESTION No. 1

What percentage of your assets should be ranked critical based on the risk of the business? (Click only one answer)

- Less than 20%
- **20%** 40 %
- **40% 80%**
- More than 80%

Reliability

Key terms and definitions

What is an asset?

Something that has potential or actual value to an organization – often referred to as physical assets

What is reliability?

 The probability that an asset or item will perform its intended functions for a specific period under stated conditions

What is availability?

The degree to which a system, subsystem, or equipment is in a specified operable and committable state at the start of a mission, when the mission is called for

What is Risk-Based?

Prioritization of resources based on economy of scale utilizing a risk matrix that evaluates the impact
of the maintenance task on the probability of failure taking into consideration the consequences of
failure.

What is criticalness?

- A state of critical urgency an earnest and insistent necessity
- Applying critical thinking to the equation by also considering the criticalness (state of being critical) of the environment at hand

What is an Asset Criticality Analysis?

Asset Criticality Analysis (ACA) is a fundamental decision-making tool to evaluate how asset failures impact organizational performance

- Systematically rank assets for the purpose of:
 - workflow prioritization
 - maintenance strategy development
 - other reliability-based or risk-based asset initiatives.
- It provides the basis for determining the value and impact a specific asset has on the production/operations process or systems, as well as the level of attention the asset requires regarding reliability strategy development (RSD) or strategies and plans (SP) for asset management.
 - Designed to rank and prioritize
 - Identifies most critical assets according to their criticalness
 - Unmasks operational risks

Benefits of an Asset Criticality Analysis

Knowing where to start

- Setting of priorities
- Supporting the aim of ISO55000 for Asset Management from a RbM (risk-based) approach

Capacity assurance

Proper maintenance ensures the capacity of an asset can be realized at the designed level

Proper maintenance adds value

Appropriated maintenance strategies

Prioritized improvement activities

When time and resource availability are often limited

Dynamic and prioritized asset hierarchy of maintenance repairs

Delivering the greatest value to the organization compared to expensed costs

Where is an Asset Criticality Analysis applied?

- Selection of the correct maintenance approach starts with the Criticalness Assessment, a process that ranks equipment and classifies them by tier level. Resulting classifications are used to drive decisions on furthering maintenance strategy approaches, techniques, and resource allocation.
- Intent of scoring is to initially focus on the most critical (Top 20%) of organizational assets in order to determine optimum maintenance strategy by first performing Failure Mode Analyses so that conditionbased maintenance (CBM) optimization and Asset Health can be more aptly applied
- Higher criticalness equipment should receive a more comprehensive methodology, such as a full-blown asset criticality analysis, FMECA/RCM, and more comprehensive maintenance approach as opposed to that of lower priority equipment. Maintenance tasks selected should be based on the failure causes and the individual failure patterns.
- Run To Failure (RTF) or basic maintenance based on team experience may be used on low cost, low priority equipment where the costs of preventing failure often exceed the actual costs incurred by the failure.

Criticalness ranking: tier levels

Tier	Details
1	Failure results in immediate impact to, or shutdown of, multiple operations or systems. This failure will prevent capacity assurance due to operational, environmental, or quality issues. Equipment assigned this cursory criticality ranking (Rime Code) typically will have no redundancy and identified issues must be addressed immediately to complete scheduled production targets and goals.
2	Failure results in limited production capabilities, or shutdown of, a single operation or system. Equipment assigned this ranking may have redundancy or established by-pass equipment or systems but may limit capacity assurance. Although this equipment could become highly critical if the redundancy or by-pass fails, identified issues should be planned and scheduled with a higher work order priority.
3	Failure results in impact to, or shutdown of, a single operation or system. Equipment assigned this ranking typically has redundancy or established by-pass equipment or systems to complete the production schedule.
4	Failure has no immediate impact on capacity assurance . Some of these assets may have the maintenance strategy of Run- to-Failure associated with them, while others require issues be addressed in a timely manner through the normal Planned Workflow processes.

Asset Criticality Analysis: Example

Criticality Assessment Criteria

Equipment Score (ES)

The Equipment Score is obtained by multiplying the results for the four factors: ES = Factor A x Factor B x Factor C x Factor D

Priority Score (PS) riority Score is obtained by multiplying the results for the three factors: ES = Factor E x Factor F x Factor G

FACTOR A

Effect on production Output (Factor A)	Factor Score
No significant impact/standby equipment is available	1
Minor impact on production. Unlikely to affect other areas of the plant	2
Failure would have significant impact on output and may affect other sections	3
Major impact on the plant's operations , failure would cause over 40% of plant	
production to stop	4

FACTOR E
Frequency of Failure (Factor B
Failures are rare, less than once per year

Failures are rare, less than once per year	1 1
Occasional failure between 3 and 12 months	2
Failure likely between 1 and 3 months	3
Frequent failures at least once per month	4
Frequent failures at least once per week	5

Factor Score

FACT	OR B
------	------

Utilization (Factor B)	Factor Score
Equipment is used on an occasional basis	1
Equipment is required to function independently for up to 50% of available time	2
Equipment is part of a continuous process, required to function for a major proportion of the planned production time	2
	3
Equipment is required to function for all of the planned time	4

	FACTOR	RF	
ſ			

Downtime/Repair Time (Factor F)	Downtime	Factor Score
Minor	0 - 30 min	1
Significant	30 - 120 min	2
Major	2 - 8 hrs	3
Severe	> 8 hrs	4

FACTOR C

Quality (Factor C)	Factor Score
No effect on product quality	1
Minor effect on product quality	2
Critical effect on product quality and can result in major losses	3

FACTOR D

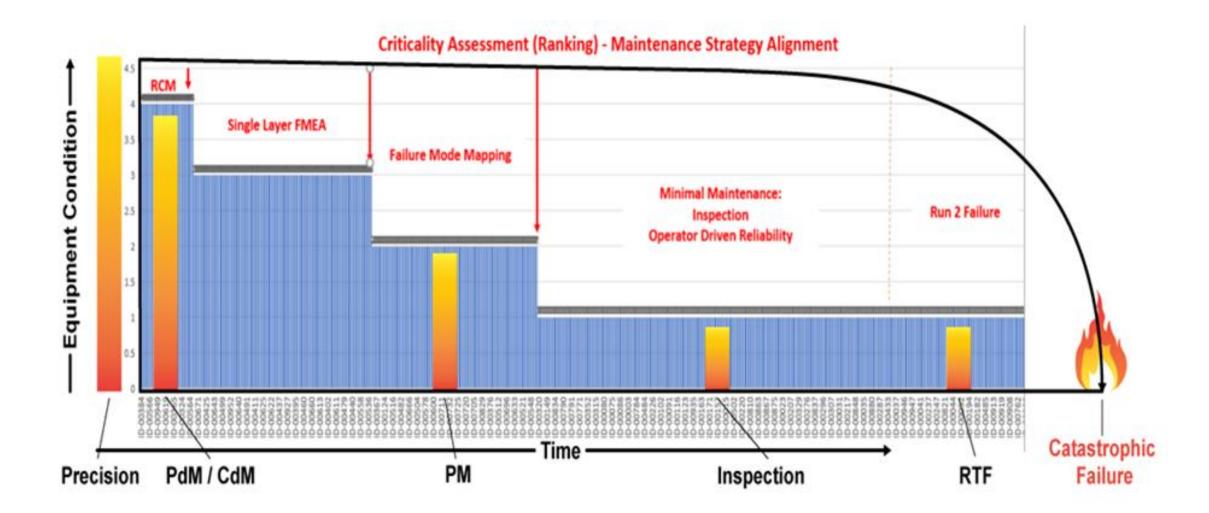
11

Effect on Safety or Environment (Factor D)	Factor Score
Little or no risk to the safety of people, equipment or the environment	1
Minor risk to people, equipment or the environment	2
equipment or the environment, which requires notification to relevant	
authorities	3
Martin in a data the standard from the second standard standard standard standard standard standard standard st	
Major impact on the plant's operations , failure would cause over 40% of plant	
production to stop	4

Note: These descriptions and times demonstrate the principle. Individual companies may be required to amend/modify descriptions and times to meet their own situation.

Equip.	Priority	Total	Cat
Score	Score	Score	
AxBxCxD	ExFxG	ESxPS	A,B or C

FACTOR G


Waste (Factor G)	Quantity	Factor Score		
No waste is generated under normal operating conditions	0%	1		
Small amounts of waste are produced by failure	2%	2		
Waste is produced during production that is significant	5%	3		
Quantities of waste are significant and warrant immediate				
attention	10%	4		

The total criticality score is obtained by multiplying the Equipment Score Score:

Criticality Score = ES x PS

FLUKE

Maintenance Alignment - PF Curve

liability

FLUKE

How is it applied and by whom?

The overall purpose of a criticality analysis is to provide a ranked list of assets in the operational domain to determine the top 20% based on a standard set of criteria. The criteria are selected to represent the criticalness of the equipment to the facility considering the impact to and from multiple disciplined areas within an asset management domain - hence the name - criticality analysis.

Weighted scoring by category or criteria

- Operational severity
- Safety severity
- Environmental severity
- Single point of failure (key inclusion here)
- Maintainability
- Reliability
- Spares lead time

POLL QUESTION No. 2

Where/how would you benefit most to perform an ACA? (Click only one answer)

- Better alignment with maintenance strategies
- Provide ability to escape from reactive maintenance
- Improve work execution
- Already completed and using for daily work

Practical applications: Not a one-size-fits-all approach

Facilities maintenance

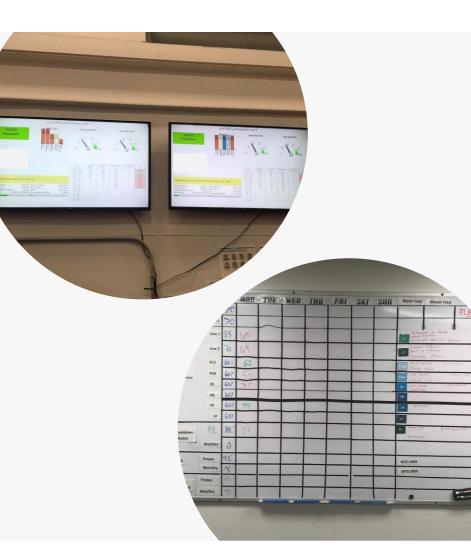
- Fluke Park (Washington State)
- Main asset type (motor-pump skid, air compressor, HVAC systems)
- Foundational element to a new reliability culture
- Infusion of CBM modalities

Created a criticality analysis of Fluke Park equipment list

Ranked critical analysis list

Designed a Preventive Action test schedule and inspection routes

List important assots Rank the asso					sets	ts					Relative ra	a							
No.	Asset name Asset type		Safety critical			Repair cost			Environment Impact		Overall criticality	Criticality group							
1	#1 Turbine generator Turbine-gen		5	5		5			5		20	Star							
2	#la B	#1a Boiler feed pump Motor-pump		3	5			4		3		15 Critical							
3	#1b H	#1b Boiler feed pump Motor-pump		3	5			4		3		15	Critical						
4	#1c B	Boiler fe	ed pump	1	Motor-pump	3	5			4		3		15	Critical				
5	#1a (#1a Condensate pump Motor-pump		2	4			2		2 10		10	Semi-critical						
6	#1b	No.	Asset n	ame		Asset type								vironment	Overall	Criticality			
7	#1c							critical		critical				ıpact	criticality	group			
8	#la	1	#1 Turbine generator		enerator	Turbine-gen	5			5 5		5 5			20 St		Star		
9	#1b	2	#1a Boil	ler fe	ed pump	Motor-pump	3	1		5 4		4 3			15 Cr		Critical		
10	#1c	3	#1b Boi	ler fe	ed pump	Motor-pump	3		5		4		3		15 Cri		Critical		
11	#1a	4	#1c Boil	er fe	ed pump	Motor-pump	3	5			4	4 3			15 Crit		Critical		
12	#1b	5	#1a Con	dens	ate pump	Motor-pump	2	2		2		2 2			10 Ser		Semi-critical		
13	#1 A	6	#1b Co	No	. Asset	1200		Screen				Diagnose			Correct/check		Contra		icality
14	#1 S	7	#1c Co			name		Bergen	Screen			Diagnose			Correct/check				ap
15	#1 E	8	#1a Cir	1	#1 Turi	rbine generator Electridaily		Electric/t	ctric/thermal		T	Vibration weekly		lv	Alignment month		hlv Star		
16	#1 B	9	#1b Ci	1							VIDIATION WCCRTy		-9	ringimont montiny		· /			
17	#11	10	#1c Cir	2	#1a Bo	iler feed pump iler feed pump iler feed pump				Vibration guarterly or		Alignment yearly or		oras	as Critical				
18	#la	11	#1a Hy	3	_						as needed		needed			Criti	ical		
19	#1b	12	#1b Hy	4	#1c Boi					L						Critical			
20	#la	13	#1 Air	5	#1a Co	ndoncato nu	lensate pump Electric/t		thermal		Ť	Vibration as need		baha	Alignment as		e needed		i-critical
21	#1b	14	#1 Sup	6 #1b Condensate			monthly		imai	vibration us i		necucu		1 inginitone as noo		ucu		i-critical	
		15	#1 Exh	7			ensate pump								Semi-critical				
		16	#1 Blo	8														i-critical	
		17	# 1 Re	9							L						Sem	i-critical	
		18	#1a Co	10 #1c Circ water pump														Sem	i-critical
		19	#1b Co	11							L						Semi-critical		i-critical
		20	#1a Co	12	#1b Hy	#1b Hydraulic pump											Sem	i-critical	
	l	21	#1b Co	13	#1 Air	compressor										Semi-critical			
	14 #1 Sup			ply fan Electric/t			he	hermal Vib		Vibration as needed		eded	Alignment as nee		ded	Non	-critical		
				#1 Exh	haust fan quart		quarterly			L							Non-critical		
			16							Т						Non-critical		-critical	
			17	# 1 Red	circ fan													Non-critical	
			18	#1a Co	oling tower f	an										Nor		Non-critical	
			19	_		oling tower fan				T							Non	-critical	
			20	#1a Co	oling pump												Non	-critical	
				21	#1b Co	oling pump												Non	-critical


FLUKE

Reliability

Practical applications: Not a one-size-fits-all approach

Manufacturing

- Food manufacturer in Midwest
- Asset type (gearbox, conveyors lines, motors, valves, pumps)
- Tracking OEE (production) and uptime (per line)
 - Have not performed a formal ACA.
 - Was only based on Tribal Knowledge
- Did not align maintenance strategies with criticalness
- Scenario:
 - Critical Valve in Water Tank (repeated failures)
 - Single point of Failure
 - Critical Parts not in inventory

Practical applications: Not a one-size-fits-all approach

Utilities

- WWTP on West Coast
- Typical asset types:
 - Raw sewage pump, separators, motors, digester systems
 - ACA not done but, on the roadmap
- Typical reactive environment
 - Have not completed an ACA
 - Deploying some CBM technologies
- Ready to move forward with an ACA to improve Preventive **Action Maintenance Strategies**

QUESTIONS?

Thank you!

Frederic Baudart, CMRP

Frederic.Baudart@Fluke.com

Lead SME Manager, Fluke Reliability

Gregory Perry, CMRP, CRL

Gregory.Perry@Fluke.com

Senior Consultant, Fluke Reliability

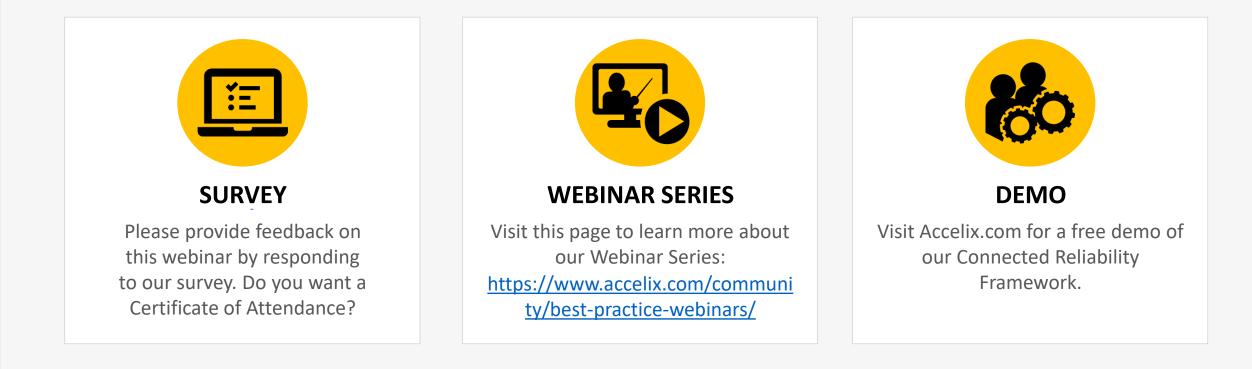
Next webinar: The rise of the connected worker: implications for maintenance and operations in 2021

BEST PRACTICE WEBINAR Wednesday, Jan. 6, 11 a.m. ET

The rise of the connected worker: implications for maintenance and operations in 2021

As more plants move ahead with their digitalization strategies, individual maintenance and reliability professionals will find themselves becoming increasingly "connected" in 2021. But what does that actually look like? Where are the biggest differences, what are the speedbumps we should watch out for, and which opportunities are the most exciting?

Keith Larson, editor-in-chief of *Control* magazine, and **Ankush Malhotra**, vice president and general manager at Fluke Reliability, share their insights about what the coming year may hold for maintenance and operations professionals.



Keith Larson A

Ankush Malhotra

To learn more about Accelix and our Webinar Series

Reliability

THANK YOU AND HAPPY 2021!

www.fluke.com

1-800-850-4608

sales@accelix.com

Accelix[™]